$V = 1977.70 (12) \text{ Å}^3$

6801 measured reflections

1105 independent reflections

909 reflections with $I > 2\sigma(I)$

 $\mu = 0.18 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 21.0^{\circ}$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[2,6-Bis(4-methoxyphenyl)tetrahydrothiopyran-4-ylidene]malononitrile

A. Thiruvalluvar,^a* S. Balamurugan,^a A. Manimekalai^b and I. Anusuya^b

^aDepartment of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005. Tamilnadu, India, and ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India Correspondence e-mail: athiru@vsnl.net

Received 17 September 2007; accepted 20 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.055; wR factor = 0.193; data-to-parameter ratio = 8.7.

In the title molecule, $C_{22}H_{20}N_2O_2S$, the tetrahydrothiopyran ring adopts a chair conformation. The dicyanomethylene group and the 4-methoxyphenyl groups have equatorial orientations. A crystallographic mirror plane bisects the molecule, passing through the S and opposite C atoms of the central ring.

Related literature

For related literature, see: Haller & Ludtke (1976); Manimekalai & Anusuya (2005).

Experimental

Crystal data

C22H20N2O2S $M_r = 376.47$ Orthorhombic, Pnma Mo $K\alpha$ radiation a = 8.4906 (3) Å b = 24.6848 (7) Å c = 9.4361 (4) Å $0.15 \times 0.11 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.748, T_{\max} = 1.000$ (expected range = 0.733 - 0.980)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 127 parameters $wR(F^2) = 0.193$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^-$ S = 1.18 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ 1105 reflections

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-NT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

The use of the XRD service and the valuable assistance of Dr A. Babu Vargheese and Mr K. Saminathan, SAIF, IIT, Chennai, are gratefully acknowledged. AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06 (UGC-SERO), Link No. 2355, 10/01/2007].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2145).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Haller, R. & Ludtke, E. (1976). Arch. Pharm. 309, 696-699.

- Manimekalai, A. & Anusuya, J. (2005). Indian J. Chem. Sect. B, 44, 2087-2092. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4149 [doi:10.1107/S1600536807046296]

2-[2,6-Bis(4-methoxyphenyl)tetrahydrothiopyran-4-ylidene]malononitrile

A. Thiruvalluvar, S. Balamurugan, A. Manimekalai and J. Anusuya

Comment

In the title molecule, 4-dicyanomethylene-r2,c6-bis(*p*-methoxyphenyl)tetrahydrothiopyran, $C_{22}H_{20}N_2O_2S$, the tetrahydrothiopyran ring adopts a chair conformation. The dicyanomethylene group in the 4-position and the *p*-methoxyphenyl groups at positions 2 and 6 have equatorial orientations. A crystallographic mirror plane bisects the molecule, passing through the S and opposite C atoms of the central ring (Fig. 1). No classical hydrogen bonds are found in the crystal structure.

Experimental

The title compound was prepared from *cis*-2,6-bis(*p*-methoxyphenyl) tetrahydrothiopyran-4-one by adopting a general procedure described in the literature (Haller & Ludtke, 1976) and it was characterized using NMR techniques (Manimekalai & Anusuya, 2005).

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and U_{iso} = 1.2–1.5 U_{eq} (C).

Figures

Fig. 1. The molecular structure with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. [Symmetry code: (a) x, 1/2 - y, z.]

Fig. 2. The molecular packing of the title molecule, viewed down the c axis.

2-[2,6-Bis(4-methoxyphenyl)tetrahydrothiopyran-4-ylidene]malononitrile

 $D_{\rm x} = 1.264 {\rm Mg m}^{-3}$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 1.7 - 21.0^{\circ}$

 $\mu = 0.18 \text{ mm}^{-1}$ T = 298 (2) K

Block, pale-yellow

 $0.15 \times 0.11 \times 0.11 \text{ mm}$

Melting point: 485(1) K Mo Kα radiation

Cell parameters from 2118 reflections

Crystal data

 $\mathrm{C}_{22}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{2}\mathrm{S}$ $M_r = 376.47$ Orthorhombic, Pnma Hall symbol: -P 2ac 2n a = 8.4906 (3) Å b = 24.6848 (7) Å c = 9.4361 (4) Å $V = 1977.70 (12) \text{ Å}^3$ Z = 4 $F_{000} = 792$

Data collection

Bruker APEXII diffractometer	1105 independent reflections
Radiation source: fine-focus sealed tube	909 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 293(2) K	$\theta_{\text{max}} = 21.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -8 \rightarrow 7$
$T_{\min} = 0.748, \ T_{\max} = 1.000$	$k = -22 \rightarrow 24$
6801 measured reflections	$l = -9 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	Hydrogen site location: inferred from neighbouri sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.193$	$w = 1/[\sigma^2(F_o^2) + (0.0939P)^2 + 1.7792P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.18	$(\Delta/\sigma)_{max} < 0.001$
1105 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
127 parameters	$\Delta \rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

map ing

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	Uiso*/Ueq
S1	0.4518 (2)	0.25000	0.6263 (2)	0.0760 (7)
O24	0.3295 (5)	-0.00687 (13)	0.7469 (4)	0.1023 (16)
N43	1.0637 (7)	0.3378 (3)	0.3432 (5)	0.123 (3)
C2	0.5576 (7)	0.19394 (17)	0.5493 (7)	0.099 (3)
C3	0.7265 (7)	0.19799 (18)	0.5578 (8)	0.106 (3)
C4	0.7984 (9)	0.25000	0.5038 (9)	0.088 (3)
C15	0.2481 (8)	-0.0430 (2)	0.6552 (7)	0.113 (3)
C21	0.4916 (6)	0.14095 (18)	0.6034 (6)	0.0740 (19)
C22	0.5190 (6)	0.12309 (19)	0.7398 (7)	0.087 (2)
C23	0.4615 (6)	0.0735 (2)	0.7861 (6)	0.086 (2)
C24	0.3781 (6)	0.04156 (17)	0.6932 (6)	0.0753 (19)
C25	0.3502 (6)	0.05867 (19)	0.5597 (6)	0.085 (2)
C26	0.4067 (6)	0.10849 (18)	0.5145 (6)	0.085 (2)
C41	0.9279 (9)	0.25000	0.4247 (8)	0.078 (3)
C42	1.0032 (7)	0.2993 (3)	0.3802 (5)	0.090 (2)
H2	0.53261	0.19483	0.44792	0.1190*
H3A	0.75715	0.19345	0.65612	0.1276*
H3B	0.77170	0.16810	0.50488	0.1276*
H15A	0.22139	-0.07538	0.70603	0.1695*
H15B	0.15368	-0.02594	0.62143	0.1695*
H15C	0.31438	-0.05200	0.57620	0.1695*
H22	0.57693	0.14461	0.80170	0.1050*
H23	0.47919	0.06205	0.87858	0.1027*
H25	0.29289	0.03699	0.49771	0.1015*
H26	0.38648	0.11995	0.42242	0.1022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displa	acement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0838 (13)	0.0425 (11)	0.1016 (14)	0.0000	0.0084 (10)	0.0000
O24	0.116 (3)	0.056 (2)	0.135 (3)	-0.014 (2)	0.011 (2)	0.017 (2)
N43	0.140 (5)	0.115 (4)	0.114 (4)	-0.035 (4)	0.016 (3)	0.017 (3)
C2	0.110 (5)	0.042 (3)	0.146 (5)	0.004 (3)	0.021 (4)	-0.003 (3)

supplementary materials

C3	0.097 (4)	0.050 (3)	0.172 (6)	0.005 (3)	0.033 (4)	0.001 (3)
C4	0.090 (5)	0.053 (4)	0.121 (6)	0.0000	0.013 (5)	0.0000
C15	0.123 (5)	0.055 (3)	0.161 (6)	-0.022 (3)	0.020 (4)	-0.009 (3)
C21	0.088 (3)	0.042 (3)	0.092 (4)	0.007 (2)	0.017 (3)	0.004 (3)
C22	0.096 (4)	0.060 (3)	0.106 (4)	-0.005 (3)	-0.008 (3)	-0.013 (3)
C23	0.099 (4)	0.065 (3)	0.093 (4)	-0.002 (3)	-0.010 (3)	0.012 (3)
C24	0.081 (3)	0.040 (3)	0.105 (4)	0.005 (2)	0.012 (3)	0.011 (3)
C25	0.092 (4)	0.057 (3)	0.106 (4)	-0.012 (3)	0.004 (3)	-0.005 (3)
C26	0.096 (4)	0.059 (3)	0.101 (4)	-0.003 (3)	0.013 (3)	0.004 (3)
C41	0.089 (5)	0.069 (5)	0.076 (4)	0.0000	0.006 (4)	0.0000
C42	0.103 (4)	0.087 (4)	0.079 (3)	-0.007 (4)	0.014 (3)	0.005 (3)

Geometric parameters (Å, °)

S1—C2	1.803 (5)	C25—C26	1.387 (7)
S1—C2 ⁱ	1.803 (5)	C41—C42	1.437 (8)
O24—C15	1.422 (7)	C41—C42 ⁱ	1.437 (8)
O24—C24	1.362 (6)	С2—Н2	0.980
N43—C42	1.135 (10)	С3—НЗА	0.970
C2—C3	1.440 (8)	С3—Н3В	0.970
C2—C21	1.512 (7)	C15—H15A	0.960
C3—C4	1.510 (7)	C15—H15B	0.960
C4—C41	1.329 (11)	C15—H15C	0.960
C21—C22	1.380 (8)	C22—H22	0.930
C21—C26	1.366 (7)	С23—Н23	0.930
C22—C23	1.388 (7)	С25—Н25	0.930
C23—C24	1.375 (7)	С26—Н26	0.930
C24—C25	1.350 (8)		
C2—S1—C2 ⁱ	100.3 (3)	S1—C2—H2	106.0
C15—O24—C24	118.1 (4)	C3—C2—H2	106.0
S1—C2—C3	114.9 (4)	C21—C2—H2	106.0
S1—C2—C21	110.1 (4)	С2—С3—НЗА	108.0
C3—C2—C21	114.2 (4)	С2—С3—Н3В	108.0
C2—C3—C4	116.3 (5)	С4—С3—НЗА	108.0
C3—C4—C41	121.6 (3)	С4—С3—Н3В	108.0
C3—C4—C3 ⁱ	116.5 (6)	НЗА—СЗ—НЗВ	107.0
C3 ⁱ —C4—C41	121.6 (3)	O24—C15—H15A	109.0
C2—C21—C22	121.9 (5)	O24—C15—H15B	109.0
C2—C21—C26	119.7 (5)	O24—C15—H15C	109.0
C22—C21—C26	118.3 (4)	H15A—C15—H15B	110.0
C21—C22—C23	121.1 (5)	H15A—C15—H15C	110.0
C22—C23—C24	119.1 (5)	H15B-C15-H15C	109.0
O24—C24—C23	115.0 (5)	C21—C22—H22	119.0
O24—C24—C25	124.7 (5)	C23—C22—H22	119.0
C23—C24—C25	120.4 (4)	С22—С23—Н23	120.0
C24—C25—C26	120.3 (5)	С24—С23—Н23	120.0
C21—C26—C25	120.9 (5)	C24—C25—H25	120.0
C4—C41—C42	122.2 (4)	С26—С25—Н25	120.0

C4—C41—C42 ⁱ	122.2 (4)	C21—C26—H26	120.0
C42—C41—C42 ⁱ	115.7 (6)	C25—C26—H26	120.0
N43—C42—C41	178.9 (6)		
C2 ⁱ —S1—C2—C3	47.6 (5)	C3—C4—C41—C42	-175.9 (6)
C2 ⁱ —S1—C2—C21	178.2 (4)	C3—C4—C41—C42 ⁱ	3.0 (12)
C15—O24—C24—C23	-177.5 (5)	C2—C21—C26—C25	177.4 (5)
C15—O24—C24—C25	2.2 (8)	C22—C21—C26—C25	-0.4 (8)
S1—C2—C21—C22	-73.4 (6)	C2—C21—C22—C23	-178.0 (5)
S1—C2—C3—C4	-51.9 (8)	C26—C21—C22—C23	-0.2 (8)
C21—C2—C3—C4	179.5 (6)	C21—C22—C23—C24	1.0 (8)
C3—C2—C21—C26	-120.1 (6)	C22—C23—C24—C25	-1.2 (8)
C3—C2—C21—C22	57.6 (7)	C22—C23—C24—O24	178.5 (5)
S1—C2—C21—C26	108.9 (5)	O24—C24—C25—C26	-179.1 (5)
C2—C3—C4—C3 ⁱ	49.4 (9)	C23—C24—C25—C26	0.6 (8)
C2—C3—C4—C41	-137.3 (8)	C24—C25—C26—C21	0.2 (8)
C3 ⁱ —C4—C41—C42	-3.0 (12)		
Symmetry codes: (i) x , $-y+1/2$, z .			

